NUMERICAL STUDY AND PERFORMANCE OF A DEW POINT EVAPORATIVE COOLER FOR BUILDINGS IN CONSTANTINE, ALGERIA
DOI:
https://doi.org/10.4314/jfas.v13i1.31Keywords:
Evaporative Cooling, Dew Point Temperature, Numerical Modeling, Thermal Comfort.Abstract
Due to the ever-growing demand for air-conditioning to bring the indoor air temperature to a comfortable level despite the excessive electricity consumption, research is more oriented towards new techniques enabling more energy savings and less adverse environmental impacts. Dew point evaporative cooling systems hold among the most promising because of their ability to reduce the outside air temperature below its wet bulb level while keeping the absolute humidity constant. The current paper aims to report an investigation, which tackles the cooling capacity of the system under the Algerian Climate. Constantine city (Algeria) climatic data are retained for the modelling and designing of the system in question. The study involves a variation of its length and air return rate interaction with its efficiency and air temperature supply.
Downloads
References
http://www.aprue.org.dz/documents/Consommation%20énergétique%20finale.pdf
[2] Enerdata, ‘Tendances de l’efficacité énergétique dans les pays du bassin méditerranéen, Réseau MEDENER, Projet MED-IEE : Indicateurs d’Efficacité Energétique pour la Méditerranée.’, Réseau MEDENER, 2014.
https://www.medener.org/wp-content/uploads/2017/11/tendances-efficacite-energetique-pays-bassin-mediterraneen-8177.pdf
[3] R. Belarbi, ‘Développement d’outils méthodologiques d’évaluation et d’intégration des systèmes évaporatifs pour le rafraichissement passif des bâtiments’, Ph.D. Thesis, University of La Rochelle, France, 1998.
[4] N. Lechner, Heating, Cooling, Lighting: Sustainable Design Methods for Architects, 3rd ed. New Jersey, USA: Wiley, 2009.
[5] R. Boukhanouf, H. G. Ibrahim, A. Alharbi, and M. Kanzari, ‘Investigation of an Evaporative Cooler for Buildings in Hot and Dry Climates’, J. Clean Energy Technol., vol. 2, no. 3, pp. 221–225, 2014, doi: 10.7763/JOCET.2014.V2.127.
[6] R. Boukhanouf, A. Alharbi, O. Amer, and H. G. Ibrahim, ‘Experimental and Numerical Study of a Heat Pipe Based Indirect Porous Ceramic Evaporative Cooler’, Int. J. Environ. Sci. Dev., vol. 6, no. 2, pp. 104–110, 2015, doi: 10.7763/IJESD.2015.V6.570.
[7] J. R. Camargo, C. D. Ebinuma, and J. L. Silveira, ‘Thermoeconomic analysis of an evaporative desiccant air conditioning system’, Appl. Therm. Eng., vol. 23, no. 12, pp. 1537–1549, Aug. 2003, doi: 10.1016/S1359-4311(03)00105-4.
[8] C. Maalouf, ‘Etude du potentiel de rafraîchissement d’un système évaporatif à désorption avec régénération solaire’, Ph.D. Thesis, University of La Rochelle, France, 2006.
[9] V. Maisotsenko, L. E. Gillan, T. L. Heaton, and A. D. Gillan, ‘Method and plate apparatus for dew point evaporative cooler’, US6581402B2, 24-Jun-2003.
[10] A. Hasan, ‘Indirect evaporative cooling of air to a sub-wet bulb temperature’, Appl. Therm. Eng., vol. 30, no. 16, pp. 2460–2468, Nov. 2010, doi: 10.1016/j.applthermaleng.2010.06.017.
[11] B. Riangvilaikul and S. Kumar, ‘An experimental study of a novel dew point evaporative cooling system’, Energy Build., vol. 42, no. 5, pp. 637–644, May 2010, doi: 10.1016/j.enbuild.2009.10.034.
[12] J. Lee and D.-Y. Lee, ‘Experimental study of a counter flow regenerative evaporative cooler with finned channels’, Int. J. Heat Mass Transf., vol. 65, pp. 173–179, Oct. 2013, doi: 10.1016/j.ijheatmasstransfer.2013.05.069.
[13] J. Lin, D. T. Bui, R. Wang, and K. J. Chua, ‘On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler’, Appl. Energy, vol. 217, pp. 126–142, May 2018, doi: 10.1016/j.apenergy.2018.02.120.
[14] R. Boukhanouf, A. Alharbi, H. G. Ibrahim, O. Amer, and M. Worall, ‘Computer modelling and experimental investigation of building integrated sub-wet bulb temperature evaporative cooling system’, Appl. Therm. Eng., vol. 115, pp. 201–211, Mar. 2017, doi: 10.1016/j.applthermaleng.2016.12.119.
[15] J. Lin, R. Z. Wang, M. Kumja, T. D. Bui, and K. J. Chua, ‘Modelling and experimental investigation of the cross-flow dew point evaporative cooler with and without dehumidification’, Appl. Therm. Eng., vol. 121, pp. 1–13, Jul. 2017, doi: 10.1016/j.applthermaleng.2017.04.047.
[16] A. Sohani, H. Sayyaadi, and N. Mohammadhosseini, ‘Comparative study of the conventional types of heat and mass exchangers to achieve the best design of dew point evaporative coolers at diverse climatic conditions’, Energy Conversion and Management, vol. 158, pp. 327–345, Feb. 2018, doi: 10.1016/j.enconman.2017.12.042.
[17] J. Lin, D. T. Bui, R. Wang, and K. J. Chua, ‘The counter-flow dew point evaporative cooler: Analyzing its transient and steady-state behavior’, Applied Thermal Engineering, vol. 143, pp. 34–47, Oct. 2018, doi: 10.1016/j.applthermaleng.2018.07.092.
[18] Y. Wan, J. Lin, K. J. Chua, and C. Ren, ‘Similarity analysis and comparative study on the performance of counter-flow dew point evaporative coolers with experimental validation’, Energy Convers. Manag., vol. 169, pp. 97–110, Aug. 2018, doi: 10.1016/j.enconman.2018.05.043.
[19] Y. Wan, J. Lin, K. J. Chua, and C. Ren, ‘A new method for prediction and analysis of heat and mass transfer in the counter-flow dew point evaporative cooler under diverse climatic, operating and geometric conditions’, Int. J. Heat Mass Transf., vol. 127, pp. 1147–1160, Dec. 2018, doi: 10.1016/j.ijheatmasstransfer.2018.07.142.
[20] Y. Liu, J. M. Li, X. Yang, and X. Zhao, ‘Two-dimensional numerical study of a heat and mass exchanger for a dew-point evaporative cooler’, Energy, vol. 168, pp. 975–988, Feb. 2019, doi: 10.1016/j.energy.2018.11.135.
[21] E. F. Sowell and P. Haves, ‘Efficient solution strategies for building energy system simulation’, Energy Build., vol. 33, no. 4, pp. 309–317, Apr. 2001, doi: 10.1016/S0378-7788(00)00113-4.
[22] C. Maalouf, E. Wurtz, and L. Mora, ‘Effect of Free Cooling on the Operation of a Desiccant Evaporative Cooling System’, Int. J. Vent., vol. 7, no. 2, pp. 125–138, Sep. 2008, doi: 10.1080/14733315.2008.11683805.
[23] P. Xu, X. Ma, and X. Zhao, A Dew Point Air Cooler toward Super Performance From conception, simulation, fabrication to laboratory testing and applied evaluation. LAP Lambert Academic Publishing, 2018.
[24] Document Technique Réglementaire DTR C3-2, Réglementation Thermique des Bâtiments d’Habitation, Règles de calcul des déperditions calorifiques, Fascicule 1, Annexe 1, Centre National d’Etude et de Recherches Intégrées du Bâtiment, Ministère de l’Habitat, Algeria.
[25] D. ROUAG. An Investigating of Solar Shading Devices in Algeria. M.Phil. Thesis (Unpublished). School of Architecture and Building Engineering, University of Bath, UK, 1987, P 50-52.