BUILDING MATERIALS FOR THERMAL PERFORMANCE RETROFITTING OF AN OFFICE BUILDING SKIN UNDER CONTINENTAL MEDITERRANEAN CLIMATE

Authors

  • I. A. Djebaili Département d‘architecture, Faculté des sciences de la terre et d’architecture, Université de Oum El Bouaghi
  • D. Rouag Saffidine Laboratoire Energie et Environnement, Faculté d’architecture et d‘urbanisme, Université Constantine 3
  • O. Sotehi Energie & EnvironmentLaboratory,Faculty ofArchitectureand Urbanism, University ofConstantine3, Algeria

DOI:

https://doi.org/10.4314/jfas.v12i1S.24

Keywords:

building materials, energy efficiency, insulation, thermal bridges, simulation

Abstract

In the context of optimizing the buildings energy consumption, the improvement of the parameters of nonperforming building skins may allow a greater energy efficiency and optimize indoor comfort conditions. This is greatly function of the building envelope construction materials characteristics. In effects, the building skin may contain weak points for heat exchange due to poor or missing insulation, provoking significant energy loss. To meet to such a problem, retrofitting strategy can be adopted for reducing energy loss in existing buildings through appropriate materials. For this study, the thermal behavior and envelop performance of an office building was investigated by means of infrared thermography. This provided clear evidence of thermal leaks. Subsequently, a numerical simulation was carried out using TRNSYS software in order compare the cooling and heating needs, first, at actual building, and then after applying a Rockwool external insulation together with energetic performant windows. The results show 28% of energy savings.

Downloads

Download data is not yet available.

References

[1] International Energy Agency indicators, (Accessed 28 November 2019) https://www.iea.org/topics/energy-efficiency
[2] APRUE chiffres cles 2017 « Consommation énergétique finale.pdf ». (Accessed 28 November2019),http://www.aprue.org.dz/documents/Consommation%20%C3%A9nerg%C3%A9tique%20finale.pdf
[3] Gangolells, Marta, Miquel Casals, Jaume Ferré-Bigorra, Núria Forcada, Marcel Macarulla, Kàtia Gaspar, et Blanca Tejedor. « Energy Benchmarking of Existing Office Stock in Spain: Trends and Drivers ». Sustainability 11, no 22 (janvier 2019): 6356. https://doi.org/10.3390/su11226356
[4] Danielski, I., Energy efficiency of new residential buildings in sweden : Design and Modelling Aspects, licentiate thesisin, The Departmentof Ecotechnology and Sustainable Building Engineering, Mid Sweden University: Östersund, Sweden, 2014
[5] European Commission, Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings, OJEC, L1/65, 04/01/2003.
[6] Hegger, Manfred. Construire: atlas des matériaux. PPUR Presses polytechniques, 2009.
[7] Lou Chesné. Vers une nouvelle méthodologie de conception des bâtiments, basée sur leurs performances bioclimatiques. Architecture, aménagement de l’espace. INSA de Lyon, 2012. Français p10. 2012
[8] Theodosiou, T.G., et A.M. Papadopoulos. « The Impact of Thermal Bridges on the Energy Demand of Buildings with Double Brick Wall Constructions ». Energy and Buildings 40, no 11 (janvier 2008): 2083 89. https://doi.org/10.1016/j.enbuild.2008.06.006.
[9] Susorova, Irina, Meysam Tabibzadeh, Anisur Rahman, Herek L. Clack, et Mahjoub Elnimeiri. « The Effect of Geometry Factors on Fenestration Energy Performance and Energy Savings in Office Buildings ». Energy and Buildings 57 (février 2013): 6 13. https://doi.org/10.1016/j.enbuild.2012.10.035.
[10] Krarti, Moncef. « Energy Audit of Building Systems : An Engineering Approach », 2nd ed., CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, 2011
[11] Fokaides, Paris A., et Soteris A. Kalogirou. « Application of Infrared Thermography for the Determination of the Overall Heat Transfer Coefficient (U-Value) in Building Envelopes ». Applied Energy 88, no 12 (décembre 2011): 4358 65.
[12] Bianchi, Francesco, Anna Pisello, Giorgio Baldinelli, et Francesco Asdrubali. « Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup ». Sustainability 6, no 10 (16 octobre 2014): 7107 20. https://doi.org/10.3390/su6107107.
[13] Larbi, A Ben. « Statistical Modelling of Heat Transfer for Thermal Bridges of Buildings». Energy and Buildings, 2005, 7.
[14] E. Cuce, S. B. Riffat, A state-of-the-art review on innovative glazing technologies, Renewable and Sustainable Energy Reviews, volume 41, 2015, pages 695-714.
[15] Projet de recherche et de formation universitaire: Les structures rafraichissantes et leur influence sur le comportement thermique du bâtiment, 2018-2021, N00N02UN250320180003.

Downloads

Published

2019-12-26

How to Cite

DJEBAILI, I. A.; ROUAG SAFFIDINE, D.; SOTEHI, O. BUILDING MATERIALS FOR THERMAL PERFORMANCE RETROFITTING OF AN OFFICE BUILDING SKIN UNDER CONTINENTAL MEDITERRANEAN CLIMATE. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 1S, p. 335–346, 2019. DOI: 10.4314/jfas.v12i1S.24. Disponível em: https://www.jfas.info/index.php/JFAS/article/view/716. Acesso em: 24 mar. 2023.