PASSIVE AND ACTIVE SOLAR ENERGY FOR NET ZERO ENERGY BUILDING (NZEB) IN ALGERIA CASE STUDY: SOLAR HOUSE OF BOUSSAÂDA
DOI:
https://doi.org/10.4314/jfas.v12i1S.22Keywords:
PV/T Hybrid collectors, energy needs, TRNSYS simulation, passive and active solar systems, Net Zero Building EnergyAbstract
The aim of our work is to conduct a study on the use of active and passive solar energy in the building sector for obtaining a net zero energy building. A solar house of the solar village built in Boussaâda is chosen to carry out simulation calculations in three different climates of Algeria (Algiers, Constantine and Ouargla). The passive system simulation results show that the use of these devices, such as Trombe walls and glazed surfaces, allows significant energy savings (although considered insufficient). A reduction in heating needs of 2.12, 1.7 and 2.64 times respectively for the cities of Algiers, Constantine and Ouargla is obtained. Improving the thermal performance of the structure could lead to a greater reduction in heating and cooling requirements. The reduction is estimated at 38.48, 30.44 and 21.49 % respectively for the cities of Algiers, Constantine and Ouargla.
The use of active solar systems allows covering energy needs of the solar house. High solar fractions of DHW are obtained. The electrical energy produced can cover the extra needs of DHW, HVAC, lighting and household equipment’s. Net Zero Building Energy (nZEB) can be obtained for different climates in Algeria.
Downloads
References
[2] Sanja Stevanović, Optimization of passive solar design strategies: A review, Renewable and Sustainable Energy Reviews. 2013, 25, 177-196.
[3] APrue « Consommation Energétique Finale de l’Algérie : Chiffres clés Année 2005 » Ministère de l’Energie et des Mines, Agence Nationale pour la Promotion et la Rationalisation de l’Utilisation de l’Energie, Edition 2007.
[4] Amine Boudghene Stambouli, Promotion of renewable energies in Algeria: Strategies and perspectives, Renewable and Sustainable Energy Reviews. 2011, 15, 1169-118.
[5] Amine Boudghene Stambouli, Algerian renewable energy assessment: The challenge of sustainability, Energy Policy. 2011, 39, 4507-4519.
[6] Document Technique Réglementaire, D.T.R. C 3-4, Régles de calcul des apports calorifiques des bâtiments "CLIMATISATION" "fascicule 2 ", Centre National d'Etudes et de Recherches Intégrées du Bâtiment. Ministère De L’habitat, Algérie, 2005.
[7] Mostefa BOUDIAF, Michel CAPDEROU, Maciej JANOWSKI, Étude thermique des trois prototypes du village solaire intégré, – CRAU - Mars 1983).
[8] Edwin Rodriguez-Ubinas, et al, Passive design strategies and performance of Net Energy Plus Houses, Energy and Buildings, Volume 83, Pages 10-22, 2014.
[9] F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr “Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector” Energy and Buildings. 2010, 42 (11), 2184-2199.
[10] BasantAgrawal, G.N. Tiwari « Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions, Applied Energy. 2010, 87 (2), Pages 417-426.
[11] T.T. Chow, J.W. Hand, P.A. Strachan, Building-integrated photovoltaic and thermal applications in a subtropical hotel building, Applied Thermal Engineering. 2003, 23(16), 2035-2049.
[12] Adel A. Hegazy, Comparative study of the performances of four photovoltaic/thermal solar air collectors, Energy Conversion and Management. 2000, 41(8), 861-881.
[13] David Infield, Li Mei, Ursula Eicker, Thermal performance estimation for ventilated PV facades, Solar Energy. 2004, 76 ( 1–3), 93-98.
[14] Y. Tripanagnostopoulos, Th. Nousia, M. Souliotis, P. Yianoulis , Hybrid photovoltaic/thermal solar systems, Solar Energy. 2002, 72 (3), 217-234.
[15] H.A. Zondag, D.W. de Vries, W.G.J. van Helden, R.J.C. van Zolingen, A.A. van Steenhoven, The thermal and electrical yield of a PV-thermal collector, Solar Energy. 2002, 72(2), 113-128.
[16] Soteris A Kalogirou, Christos Papamarcou, Modelling of a thermosyphon solar water heating system and simple model validation, Renewable Energy, 2000, 21(3–4), 471-493.
[17] H.P. Garg, R.K. Agarwal, J.C. Joshi, Experimental study on a hybrid photovoltaic-thermal solar water heater and its performance predictions, Energy Conversion and Management. 1994, 35( 7), 621-633.
[18] MohdNazari Abu Bakar, Mahmod Othman, MahadzirHj Din, Norain A. Manaf, HasilaJarimi, Design concept and mathematical model of a bi-fluid photovoltaic/thermal (PV/T) solar collector, Renewable Energy. 2014, 67, 153-164.
[19] C.H. Cox III, P. Raghuraman, Design considerations for flat-plate-photovoltaic/thermal collectors, Solar Energy. 1985, 35( 3), 227-241.
[20] Ashok Kumar Bhargava, H.P. Garg, Ram Kumar Agarwal, Ashok Kumar Bhargava, H.P. Garg, Ram Kumar Agarwal, Energy Conversion and Management. 1991, 31(5),471-479.
[21] L Mei, D Infield, U Eicker, V Fux, Thermal modelling of a building with an integrated ventilated PV façade, Energy and Buildings. 2003, 35, 605–617.
[22] RH Crawford, GJ Treloar, RJ Fuller, M Bazilian, Life-cycle energy analysis of building integrated photovoltaic systems (BiPVs) with heat recovery unit, Renewable and Sustainable Energy Reviews. 2006, 10 , 559–575.