COMPARISON OF CHOSEN SANDS FROM ALGERIAN QUARRY AND DUNE AEOLIAN AS PROPPANTS USED IN HYDRAULIC FRACTURING ENGINEERING

Authors

  • R. Akkal Laboratoire de G_enie Minier, Ecole Nationale Polytechnique, Departement de Génie Minier, 10 Avenue Hassen Badi BP 182 el harrach Alger
  • M. Khodja Sonatrach/Division Technologies et Innovation, Avenue du 1er Novembre, 35000 Boumerdès

DOI:

https://doi.org/10.4314/jfas.v12i1S.14

Keywords:

Quarry and Aoelian sands; roundness; sphericity; solubility; stress.

Abstract

Sand as proppants are synthetic or natural grains used for holding fractures open around the wellbore in the gas / oil well drilling industry to enhance fluid extraction after hydraulic fracturing. These proppant must have an ideal spherical shape with two values defined: roundness and sphericity. The supporting agent's other important characteristic is its solubility in acid. The acid solubility test determines a supporting agent's suitability for use in fracturing process where the supporting agent may come into contact with acids as well as the resistance to strengh. The results swhows that In all tests of sphericity and roundness dune sands proppants performed better than sand from the quarries. Also, results indicate that quarry sands are more solubility tolerant and do not exceed the 3% standard's criterion. Finally, We found that aoelian sands are resistant to the exerted stresses, except for one which has no good resistance to crushing.

Downloads

Download data is not yet available.

References

[1] Michael J Economides, Kenneth G Nolte, et al. Reservoir stimulation, volume 2. Prentice Hall Englewood Cliffs, NJ, 1989.
[2] Craig L. Cipolla, Norman R. Warpinski, Michael Mayerhofer, Elyezer P. Lolon, and Michael Vincent. The relationship between fracture complexity, reservoir properties, and fracture-treatment design. SPE Production & Operations, 25(04) :438–452, 2010. ISSN 1930-1855. doi : 10.2118/115769-PA. URL https://doi.org/10.2118/115769-PA.
[3] Wu Qi, Xu Yun, Wang Tengfei, and Wang Xiaoquan. The revolution of reservoir stimulation : An introduction of volume fracturing. Natural Gas Industry, 31(4) :7–12, 2011. URL http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201104004.htm.
[4] Terrence T. Palisch, Michael Vincent, and Patrick J. Handren. Slickwater fracturing : Food for thought. SPE Production & Operations, 25 (03) :327–344, 2010. ISSN 1930-1855. doi : 10.2118/115766-PA. URL https://doi.org/10.2118/115766-PA.
[5] Carl Montgomery. ISRM-ICHF-2013-035, chapter Fracturing Fluids, page 23. International Society for Rock Mechanics and Rock Engineering, Brisbane, Australia, 2013. URL https://doi.org/.
[6] Almaz Sadykov, Alexey V. Yudin, Maxim Oparin, Andrey Efremov, Sergey Anatolievich Doctor, Mikhail Alekseevich Vinohodov, Nikolay Vladimirovich Chebykin, I. V. Garus, Nikolay Mikhaylovich Katrich, and A. A. Rudnitsky. SPE-160767-MS, chapter Channel Fracturing in the Remote Taylakovskoe Oil Field : Reliable Stimulation Treatments for Significant Production Increase, page 11. Society of Petroleum Engineers, Moscow, Russia, 2012. ISBN 978-1-61399-214-2. doi : 10.2118/160767-MS. URL https://doi.org/10.2118/160767-MS.
[7] Z. P. Bazant and V. T. Chau. ARMA-2016-587, chapter Vast System of Dense Intersecting Fractures : A Key Feature of Hydraulic Fracturing of Gas Shale, page 9. American Rock Mechanics Association, Houston, Texas, 2016. URL https://doi.org/.
[8] J. B. Clark. A hydraulic process for increasing the productivity of wells. Journal of Petroleum Technology, 1(01) :1–8, 1949. ISSN 0149-2136. doi : 10.2118/949001-G. URL https://doi.org/10.2118/949001-G.
[9] Francis Peretti, Antonio Montilva, Lenin Rodriguez, Omar Rosario, Julio Torrealba, and Mauro Martinez. SPE-184932-MS, chapter Increasing Production by Diagnosing Well Productivity : A Case Study for Other Mature Fields, page 22. Society of Petroleum Engineers, Salvador, Bahia, Brazil, 2017. ISBN 978-1-61399-537-2. doi : 10.2118/184932-MS. URL https://doi.org/10.2118/184932-MS.
[10] Boyun Guo, William C. Lyons, and Ali Ghalambor. Petroleum Production Engineering, chapter 17 - Hydraulic Fracturing, pages 251–265. Gulf Professional Publishing, Burlington, 2007. ISBN 978-0-7506-8270-1. doi : https://doi.org/10.1016/B978-075068270-1/50023-2. URL http://www.sciencedirect.com/science/article/pii/B9780750682701500232.
[11] Boyun Guo, Xinghui Liu, and Xuehao Tan. Petroleum Production Engineering (Second Edition), chapter Chapter 14 - Hydraulic Fracturing, pages 389–501. Gulf Professional Publishing, Boston, 2017. ISBN 978-0-12-809374-0. doi : https://doi.org/10.1016/B978-0-12-809374-0. 00014-3. URL http://www.sciencedirect.com/science/article/pii/B9780128093740000143.
[12] Reza Barati and Jenn-Tai Liang. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16), Aug 2014. ISSN 0021-8995. doi : 10.1002/app.40735. URL https://doi.org/10.1002/app.40735.
[13] Johannes Karl Fink. Hydraulic Fracturing Chemicals and Fluids Technology, chapter Chapter 18 - Proppants, pages 205–216. Gulf Professional Publishing, 2013. ISBN 978-0-12-411491-3. URL http://www.sciencedirect.com/science/article/pii/ B9780124114913000182.
[14] Hazim Abass and Christopher Lamei. Hydraulic Fracture Modeling, chapter Chapter 14 - Hydraulic Fracturing : Experimental Modeling, pages 431–489. Gulf Professional Publishing, 2018. ISBN 978-0-12-812998-2. URL http://www.sciencedirect.com/science/ article/pii/B978012812998200014X.
[15] Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids (Second Edition), chapter Chapter 17 - Fracturing fluids, pages 567–651. Gulf Professional Publishing, Boston, 2015. ISBN 978-0-12-803734-8. doi : https://doi.org/10.1016/B978-0-12-803734-8.00017-5. URL http://www.sciencedirect.com/science/article/pii/B9780128037348000175.
[16] Ibrahim Al-Hulail, Ahmed BinGhanim, Waseem Abdulrazzaq, Hicham El-Hajj, and Osman Abdullatif. SPE-192234-MS, chapter High Resolution Analysis of Sand-Based Composition for Hydraulic Fracturing Application, page 12. Society of Petroleum Engineers, Dammam, Saudi Arabia, 2018. ISBN 978-1-61399-620-1. doi : 10.2118/192234-MS. URL https://doi.org/10.2118/192234-MS.
[17] Okpeafoh S. Agimelen, Peter Hamilton, Ian Haley, Alison Nordon, Massimiliano Vasile, Jan Sefcik, and Anthony J. Mulholland. Estimation of particle size distribution and aspect ratio of non-spherical particles from chord length distribution. Chemical Engineering Science, 123 : 629–640, 2015. ISSN 0009-2509. URL http://www.sciencedirect.com/science/article/pii/S0009250914006381.
[18] Marcin Lutynski, Dariusz Janus, and Marcin Zimny. Comparison of selected properties of natural and ceramic proppants used in hydraulic ´ fracturing technologies. In˙zynieria Mineralna, 16, 2015.
[19] Allan R. Rickards, Harold D. Brannon, William D. Wood, and Christopher J. Stephenson. Spe-84308-ms. page 14, 2003. doi : 10.2118/ 84308-MS. URL https://doi.org/10.2118/84308-MS.
[20] Muzzammil Shakeel, Waseem Abdulrazzaq, Osman Abdullatif, and Mohammed Benaafi. Spe-194924-ms. page 10, 2019. doi : 10.2118/ 194924-MS. URL https://doi.org/10.2118/194924-MS.
[21] Ahmed M. Elsarawy and Hisham A. Nasr-El-Din. Spe-191225-ms. page 25, 2018. doi : 10.2118/191225-MS. URL https://doi.org/ 10.2118/191225-MS.
[22] M. C. Vincent, H. B. Miller, D. Milton-Tayler, and P. B. Kaufman. Spe-90604-ms. page 17, 2004. doi : 10.2118/90604-MS. URL https://doi.org/10.2118/90604-MS.

Downloads

Published

2019-12-20

How to Cite

AKKAL, R.; KHODJA, M. COMPARISON OF CHOSEN SANDS FROM ALGERIAN QUARRY AND DUNE AEOLIAN AS PROPPANTS USED IN HYDRAULIC FRACTURING ENGINEERING. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 1S, p. 196–214, 2019. DOI: 10.4314/jfas.v12i1S.14. Disponível em: https://www.jfas.info/index.php/JFAS/article/view/664. Acesso em: 25 feb. 2024.