• R. akkal Laboratoire de G_enie Minier, _ Ecole Nationale Polytechnique, Departement de Génie Minier, 10 Avenue Hassen Badi BP 182 el harrach Alger
  • M. Khodja Sonatrach/Division Technologies et Innovation, Avenue du 1er Novembre, 35000 Boumerdès




Leaching; magnetic separation; Flotation; nitric acid; ammonium bifluoride.


The main objective of this study is focused on the mechanical preparation of Algerian crude feldspar with a view to extract the information about the comminution and the coloring iron rate distribution, on the one hand, and to remove the iron oxides, on the other hand, main impurities of crude feldspar by magnetic separation, flotation and more particularly by chemical leaching. In this process, the nitric acid and dithionite as reducing agent are used to replace sulfuric acid whose the application tests have yielded negative results. Research results shows that using a nitric acid in a reducing medium as ammonium bifluoride (HF,NH4F) process is effective and pushes the degree of iron oxides (Fe2O3) removal around 0.01\%. The hydro-metallurgical process applied especially to size fractions [-0.8 + 0.1] mm intended for the glass industry previously undergo a high intensity magnetic field reduces iron levels up to 0.054 \% with a yields in terms of weight of 58.32\% compared to those of all comers.


Download data is not yet available.


[1] S. Pelte, G. Flamant, R. Flamand, D. Gauthier, E. Beche, and R. Berjoan. Effects of thermal treatment on feldspar sorptive properties : Identification of uptake mechanisms. Minerals Engineering, 13(6) :609–622, 2000. ISSN 0892-6875. doi : https://doi.org/10.1016/S0892-6875(00) 00044-3. URL http://www.sciencedirect.com/science/article/pii/S0892687500000443.
[2] B. Anselmi and H. Harbeck. Developments in mineral processing. 13 :C11–9–C11–16, 2000. ISSN 0167-4528. doi : https://doi.org/10.1016/ S0167-4528(00)80086-1. URL http://www.sciencedirect.com/science/article/pii/S0167452800800861.
[3] Ewa Slaby, Jens Götze, Gerhard Wörner, Klaus Simon, Roman Wrzalik, and Michal Smigielski. K-feldspar phenocrysts in microgranular magmatic enclaves : A cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos, 105 (1) :85–97, 2008. ISSN 0024-4937. URL http://www.sciencedirect.com/science/article/pii/S0024493708000376.
[4] Cengiz Karagüzel and G. Çobanoğlu. Stage-wise flotation for the removal of colored minerals from feldspathic slimes ˘ using laboratory scale jameson cell. Separation and Purification Technology, 74(1) :100 – 107, 2010. ISSN 1383-5866. doi : http://dx.doi. org/10.1016/j.seppur.2010.05.012. URL http://www.sciencedirect.com/science/article/pii/S1383586610002054.
[5] M. Palomba, G. Padalino, and A. Baldracchi. An unusual occurrence of an exploitable k-feldspar deposit hosted in the ordovician porphyroids (southern sardinia) : Geology, mineralogy, geochemical features and economic potential. Ore Geology Reviews, 37(3) :202–213, 2010. ISSN 0169-1368. URL http://www.sciencedirect.com/science/article/pii/S016913681000034X.
[6] Ilaria Adamo, Valeria Diella, Alessandro Pavese, Pietro Vignola, and Fernando Francescon. Na-feldspar (f) and kaolinite (k) system at high temperature : Resulting phase composition, micro-structural features and mullite-glass gibbs energy of formation, as a function of f/k ratio and kaolinite crystallinity. Journal of the European Ceramic Society, 33(15) :3387–3395, 2013. ISSN 0955-2219. doi : https://doi.org/10. 1016/j.jeurceramsoc.2013.06.003. URL http://www.sciencedirect.com/science/article/pii/S0955221913002872.
[7] O. Kangala and A. Guneya. Beneficiation of low-grade feldspars using free jet flotation. Mineral Processing and Extractive Metallurgy, 23 : 129–140, 2002.
[8] I. Dogu and A.I. Arol. Separation of dark-colored minerals from feldspar by selective flocculation using starch. Powder Technology, 139 (3) :258 – 263, 2004. ISSN 0032-5910. doi : http://dx.doi.org/10.1016/j.powtec.2003.11.009. URL http://www.sciencedirect.com/ science/article/pii/S0032591003003735.
[9] E. Bernardo, J. Doyle, and S. Hampshire. Sintered feldspar glass-ceramics and glass-ceramic matrix composites. Ceramics International, 34(8) :2037 – 2042, 2008. ISSN 0272-8842. doi : http://dx.doi.org/10.1016/j.ceramint.2007.07.027. URL http://www.sciencedirect. com/science/article/pii/S0272884207002106.
[10] Aisha S.G. Stumpf, Carlos P. Bergmann, Juliane Vicenzi, Rebecca Fetter, and Karina S. Mundstock. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4 Materials & Design, 30(10) :4348 – 4359, 2009. ISSN 0261-3069. doi : http: //dx.doi.org/10.1016/j.matdes.2009.04.009. URL http://www.sciencedirect.com/science/article/pii/S0261306909001587.
[11] Xiaosu Cheng, Shanjun Ke, Qianghong Wang, Hui Wang, Anze Shui, and Pingan Liu. Fabrication and characterization of anorthite-based ceramic using mineral raw materials. Ceramics International, 38(4) :3227 – 3235, 2012. ISSN 0272-8842. doi : http://dx.doi.org/10.1016/j. ceramint.2011.12.028. URL http://www.sciencedirect.com/science/article/pii/S0272884211010959.
[12] Asfaw Zegeye, Sani Yahaya, Claire I. Fialips, Maggie L. White, Neil D. Gray, and David A.C. Manning. Refinement of industrial kaolin by microbial removal of iron-bearing impurities. Applied Clay Science, 86(0) :47 – 53, 2013. ISSN 0169-1317. doi : http://dx.doi.org/10.1016/ j.clay.2013.08.041. URL http://www.sciencedirect.com/science/article/pii/S0169131713002871.
[13] L.O. Filippov, V.V. Severov, and I.V. Filippova. An overview of the beneficiation of iron ores via reverse cationic flotation. International Journal of Mineral Processing, 127(0) :62 – 69, 2014. ISSN 0301-7516. doi : http://dx.doi.org/10.1016/j.minpro.2014.01.002. URL http: //www.sciencedirect.com/science/article/pii/S0301751614000155.
[14] O. Bayat, V. Arslan, and Y. Cebeci. Combined application of different collectors in the floatation concentration of turkish feldspars. Minerals Engineering, 19(1) :98 – 101, 2006. ISSN 0892-6875. doi : http://dx.doi.org/10.1016/j.mineng.2005.06.015. URL http: //www.sciencedirect.com/science/article/pii/S0892687505002037.
[15] C. Karaguzel, I. Gulgonul, C. Demir, M. Cinar, and M.S. Celik. Concentration of k-feldspar from a pegmatitic feldspar ore by flotation. International Journal of Mineral Processing, 81(2) :122–132, 2006. ISSN 0301-7516. doi : http://dx.doi.org/10.1016/j.minpro.2006.07.008. URL http://www.sciencedirect.com/science/article/pii/S0301751606001529.
[16] I Gülgönül, C Karagüzel, MS Celik. Surface vs. bulk analyses of various feldspars and their significance to flotation. International Journal of Mineral Processing, 86(1ÃC¡ cô C´ AÃ˘ C ¸S4) :68 – 74, 2008. ISSN 0301-7516. doi : http: ´ //dx.doi. org/10.1016/j.minpro.2007.11.001. URL http://www.sciencedirect.com/science/article/pii/S0301751607002232.
[17] Luzheng Chen, Guoping Liao, Zhihua Qian, and Jian Chen. Vibrating high gradient magnetic separation for purification of iron impurities under dry condition. International Journal of Mineral Processing, 102-103(0) :136 – 140, 2012. ISSN 0301-7516. doi : http: ´ //dx.doi.org/10.1016/j.minpro.2011.11.012. URL http://www.sciencedirect.com/science/article/pii/S0301751611001785.
[18] Adam Jordens, Ying Ping Cheng, and Kristian E. Waters. A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41(0) :97 – 114, 2013. ISSN 0892-6875. doi : http://dx.doi.org/10.1016/j.mineng.2012.10.017. URL http: //www.sciencedirect.com/science/article/pii/S0892687512003597.
[19] Cengiz Karaguzel. Selective separation of fine albite from feldspathic slime containing colored minerals (fe-min) by batch scale dissolved air flotation (daf). Minerals Engineering, 23(1) :17 – 24, 2010. ISSN 0892-6875. doi : http://dx.doi.org/10.1016/j.mineng.2009.09.002. URL http://www.sciencedirect.com/science/article/pii/S0892687509002271.
[20] J. Yianatos, N. Bergh, R. Bucarey, J. Rodríguez, and F. Díaz. The effect of fines recycling on industrial grinding performance. Minerals Engineering, 18(11) :1110–1115, 2005. ISSN 0892-6875. doi : https://doi.org/10.1016/j.mineng.2005.03.001. URL http: //www.sciencedirect.com/science/article/pii/S0892687505001068.
[21] C Sierra, J Martínez, JM Menéndez-Aguado, E.AfifcJ.R.Gallego. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy. Journal of Hazardous Materials, 248-249(0) :194 – 201, 2013. ISSN ´ 0304-3894. doi : http://dx.doi.org/10.1016/j.jhazmat.2013.01.011. URL http://www.sciencedirect.com/science/article/pii/ S0304389413000241.
[22] Ahmed A.S. Seifelnassr, Eltahir M. Moslim, and Abdel-Zaher M. Abouzeid. Concentration of a sudanese low-grade iron ore. International Journal of Mineral Processing, 122(0) :59 – 62, 2013. ISSN 0301-7516. doi : http://dx.doi.org/10.1016/j.minpro.2013.04.001. URL http: //www.sciencedirect.com/science/article/pii/S0301751613000823.
[23] J.H.P. Watson and P.A. Beharrell. Extracting values from mine dumps and tailings. Minerals Engineering, 19(15) :1580 – 1587, 2006. ISSN 0892-6875. doi : http://dx.doi.org/10.1016/j.mineng.2006.08.014. URL http://www.sciencedirect.com/science/article/pii/S0892687506002159. Physical Processing of Ores and Minerals, featuring selected papers from Comminution ÃC¡ cô C´ AÃ˘ C´ Z06, ´ Magnetic and Electrical Separation Z06 and Gravity Concentration 066, held in Perth, Australia, March 2006.
[24] M.A.Amarante, A. Botelho de Sousa, and M.Machado Leite. Beneficiation of a feldspar ore for application in the ceramic industry. The Journal of The South African Institute of Mining and Metallurgy, page 4, JULY/AUGUST 1997.
[25] J. Svoboda. Magnetic Techniques for the Treatment of Materials. Advances in Global Change Research Series. Kluwer Academic Publishers, 2004. ISBN 9781402020384. URL http://books.google.dz/books?id=WFBpOXSe8kQC.
[26] Mousa Gougazeh. Evaluation and beneficiation of feldspar from arkosic sandstone in south jordan for application in the ceramic industry. American Journal of Applied Sciences, Volume 3, Issue 1 :1655–1661, 2006.
[27] F. Burat, O. Kokkilic, O. Kangal, V. Gurkan, and M. S. Celik. Quartz-feldspar separation for the glass and ceramics industries. Mining, Metallurgy & Exploration, 24(2) :75–80, 2007. ISSN 2524-3470. doi : 10.1007/BF03403362. URL https://doi.org/10.1007/BF03403362.
[28] Reza M. Rahman, Seher Ata, and Graeme J. Jameson. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing, 106ÃC¡ cô C´ AÃ˘ C ¸S109(0) :70 – 77, 2012. ISSN 0301-7516. doi : http: ´ //dx.doi.org/10.1016/j.minpro.2012.03.001. URL http://www.sciencedirect.com/science/article/pii/S0301751612000282.
[29] Shadrack Fosu, Allan Pring, William Skinner, and Massimiliano Zanin. Characterisation of coarse composite sphalerite particles with respect to flotation. Minerals Engineering, 71(0) :105 – 112, 2015. ISSN 0892-6875. doi : http://dx.doi.org/10.1016/j.mineng.2014.08.023. URL http://www.sciencedirect.com/science/article/pii/S0892687514003288.
[30] S.K. Mandal and P.C. Banerjee. Iron leaching from china clay with oxalic acid : effect of different physico-chemical parameters. International Journal of Mineral Processing, 74(1-4) :263 – 270, 2004. ISSN 0301-7516. doi : http://dx.doi.org/10.1016/j.minpro.2004. 01.004. URL http://www.sciencedirect.com/science/article/pii/S0301751604000079.
[31] Feihu Du, Jingsheng Li, Xiaoxia Li, and Zhizhen Zhang. Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid. Ultrasonics Sonochemistry, 18(1) :389 – 393, 2011. ISSN 1350-4177. doi : http://dx.doi.org/10.1016/j.ultsonch.2010.07.006. URL http://www.sciencedirect.com/science/article/pii/S1350417710001264.
[32] Zhizhen Zhang, Jingsheng Li, Xiaoxia Li, Houquan Huang, Lifen Zhou, and Tiantian Xiong. High efficiency iron removal from quartz sand using phosphoric acid. International Journal of Mineral Processing, 114-117(0) :30 – 34, 2012. ISSN 0301-7516. doi : http://dx.doi.org/10.1016/j.minpro.2012.09.001. URL http://www.sciencedirect.com/science/article/pii/ S030175161200110X.
[33] Houquan Huang, Jingsheng Li, Xiaoxia Li, and Zhizhen Zhang. Iron removal from extremely fine quartz and its kinetics. Separation and Purification Technology, 108(0) :45 – 50, 2013. ISSN 1383-5866. doi : http://dx.doi.org/10.1016/j.seppur.2013.01.046. URL http: //www.sciencedirect.com/science/article/pii/S1383586613000683.
[34] M. Taxiarchou, D. Panias, I. Douni, I. Paspaliaris, and A. Kontopoulos. Removal of iron from silica sand by leaching with oxalic acid. Hydrometallurgy, 46(1-2) :215 – 227, 1997. ISSN 0304-386X. doi : http://dx.doi.org/10.1016/S0304-386X(97)00015-7. URL http://www.sciencedirect.com/science/article/pii/S0304386X97000157.




How to Cite

AKKAL, R.; KHODJA, M. PURIFICATION OF FELDSPAR FROM IRON OXIDE IMPURITIES USING NITRIC ACID IN PRESENCE OF AMMONIUM BIUORIDE. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 1S, p. 118–140, 2019. DOI: 10.4314/jfas.v12i1S.10. Disponível em: https://www.jfas.info/index.php/JFAS/article/view/651. Acesso em: 25 feb. 2024.