• R. Akkal Laboratoire de G_enie Minier, Ecole Nationale Polytechnique, Departement de Génie Minier, 10 Avenue Hassen Badi BP 182 el harrach Alger
  • M. Khodja Sonatrach/Division Technologies et Innovation, Avenue du 1er Novembre, 35000 Boumerdès



Weighting agent; rheology;damage ratio; water-oil mud; permeability reduction.


The effect of calcium carbonate on drilling fluid densities after damage to the reservoir during the liquid flow was considered in the present paper. To test the initial / final permeability and fluid flow rate as well as the damage ratio, the damage tests have been completed and several Binghamian drilling formulation that were carefully prepared in the laboratory are used. Based on the obtained results, there is a minimal quantity of surfactant and the DR significantly changes beyond this limit. The drilling fluids containing 3\% of calcium carbonate and 2-3 % of the emulsifiers and wetting agent show a high flow pressure and display an immense damage ratio of about 43%. It is also that these drilling fluids containing calcium carbonates provide the rheological properties close to those used in the field level. Such drilling fluids are stable over time, giving the yield stress beteween 5-10 Pa to allow the fluid flow.


Download data is not yet available.


[1] Faruk Civan. Spe-107857-ms. page 12, 2007. doi : 10.2118/107857-MS. URL
[2] M. Nunes, P. Bedrikovetsky, B. Newbery, R. Paiva, C. Furtado, and A. L. de Souza. Theoretical definition of formation damage zone with applications to well stimulation. Journal of Energy Resources Technology, 132(3), Jun 2010. ISSN 0195-0738. doi : 10.1115/1.4001800. URL 033101.
[3] Sofia Jaho, Georgia D. Athanasakou, Varvara Sygouni, Maria G. Lioliou, Petros G. Koutsoukos, and Christakis A. Paraskeva. Experimental investigation of calcium carbonate precipitation and crystal growth in one- and two-dimensional porous media. Crystal Growth & Design, 16 (1) :359–370, Jan 2016. ISSN 1528-7483. doi : 10.1021/acs.cgd.5b01321. URL
[4] Xinghui Liu and Faruk Civan. Formation damage and filter cake buildup in laboratory core tests : Modeling and model-assisted analysis. SPE Formation Evaluation, 11(01) :26–30, 1996. ISSN 0885-923X. doi : 10.2118/25215-PA. URL
[5] Ryen Caenn and George V. Chillingar. Drilling fluids : State of the art. Journal of Petroleum Science and Engineering, 14(3) :221–230, 1996. ISSN 0920-4105. doi : URL pii/0920410595000518.
[6] Adeleye Sami Apaleke, Abdulaziz A. Al-Majed, and Mohammed Enamul Hossain. Drilling fluid : State of the art and future trend. SPE149555-MS, page 13, 2012. doi : 10.2118/149555-MS. URL
[7] Adeleye Sanmi Apaleke, Abdulaziz A. Al-Majed, and Mohammed Enamul Hossain. State of the art and future trend of drilling fluid : An experimental study. SPE-153676-MS, page 10, 2012. doi : 10.2118/153676-MS. URL
[8] Erna Sánchez, Annie Audibert-Hayet, and Lionel Rousseau. Influence of drill-in fluids composition on formation damage. SPE Journal, 9 (04) :403–410, 2004. ISSN 1086-055X. doi : 10.2118/82274-PA. URL
[9] S. Cobianco, M. Bartosek, A. Lezzi, and A. Guarneri. Spe-57581-ms. page 7, 1999. doi : 10.2118/57581-MS. URL 10.2118/57581-MS.
[10] Mahmood Amani and Mohammed Al-Jubouri. The effect of high pressures and high temperatures on the properties of water based drilling fluids. Energy Science and Technology, 4(1) :27–33, 2012. doi : doi= URL download?doi=
[11] R. Rommetveit and K. S. Bjorkevoll. Spe-39282-ms. page 9, 1997. doi : 10.2118/39282-MS. URL 39282-MS.
[12] T. J. Ballard and R. A. Dawe. Spe-17160-ms. page 8, 1988. doi : 10.2118/17160-MS. URL
[13] J. A. McDonald and D. C. Buller. The significance of formation damage caused by the adsorption oil-based mud surfactant. Journal of Petroleum Science and Engineering, 6(4) :357–365, 1992. ISSN 0920-4105. doi : URL
[14] Hamidréza Ramézani, Rezki Akkal, Nathalie Cohaut, Mohamed Khodja, Toudert Ahmed-Zaid, and Faïza Bergaya. On the filtrate drilling fluid formation and near well-bore damage along the petroleum well. Journal of Petroleum Science and Engineering, 135 :299–313, 2015. ISSN 0920-4105. URL
[15] Rezki Akkal, Hamidréza Ramézani, Mohamed Khodja, and Slimane Azzi. Influence of the clay content and type of algerian sandstone rock samples on water-oil relative permeabilities. Energy & Fuels, 33(9) :9330–9341, Sep 2019. ISSN 0887-0624. doi : 10.1021/acs.energyfuels. 9b01584. URL
[16] I. A. Silva, F. K. A. Sousa, R. R. Menezes, G. A. Neves, L. N. L. Santana, and H. C. Ferreira. Modification of bentonites with nonionic surfactants for use in organic-based drilling fluids. Applied Clay Science, 95 :371–377, 2014. ISSN 0169-1317. doi : j.clay.2014.04.021. URL
[17] Mahdi Kazempour, Eduardo J. Manrique, Vladimir Alvarado, Jieyuan Zhang, and Michael Lantz. Role of active clays on alkaline-surfactantpolymer formulation performance in sandstone formations. Fuel, 104 :593–606, 2013. ISSN 0016-2361. doi : 2012.04.034. URL
[18] Ingebret Fjelde. Spe-105858-ms. page 8, 2007. doi : 10.2118/105858-MS. URL
[19] Sushant Agarwal, Tran X. Phuoc, Yee Soong, Donald Martello, and Rakesh K. Gupta. Nanoparticle-stabilised invert emulsion drilling fluids for deep-hole drilling of oil and gas. The Canadian Journal of Chemical Engineering, 91(10) :1641–1649, Oct 2013. ISSN 0008-4034. doi : 10.1002/cjce.21768. URL
[20] I. Fjelde. Spe-92412-ms. page 7, 2005. doi : 10.2118/92412-MS. URL
[21] Jayanth T. Srivatsa and Malgorzata Barbara Ziaja. Iptc-14952-ms. page 19, 2011. doi : 10.2523/IPTC-14952-MS. URL https://doi. org/10.2523/IPTC-14952-MS.
[22] Lirio Quintero. An overview of surfactant applications in drilling fluids for the petroleum industry. Journal of Dispersion Science and Technology, 23(1-3) :393–404, Jan 2002. ISSN 0193-2691. doi : 10.1080/01932690208984212. URL 01932690208984212.
[23] Germana Gallino, Massimo Migliori, and Bruno de Cindio. A rheological approach to drill-in fluids optimization. Rheologica Acta, 40(2) : 196–203, 2001. ISSN 1435-1528. doi : 10.1007/s003970000153. URL
[24] Benjamin Herzhaft, Yannick Peysson, Patrick Isambourg, Amaury Delepoulle, and Toure Abdoulaye. Spe-67736-ms. page 7, 2001. doi : 10.2118/67736-MS. URL
[25] A. A. Zaman, P. Singh, and B. M. Moudgil. Impact of self-assembled surfactant structures on rheology of concentrated nanoparticle dispersions. Journal of Colloid and Interface Science, 251(2) :381–387, 2002. ISSN 0021-9797. doi : URL
[26] J. Abdo and M. D. Haneef. Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Applied Clay Science, 86 : 76–82, 2013. ISSN 0169-1317. doi : URL article/pii/S0169131713003475.
[27] Adel Benchabane and Karim Bekkour. Effects of anionic additives on the rheological behavior of aqueous calcium montmorillonite suspensions. Rheologica Acta, 45(4) :425–434, 2006. ISSN 1435-1528. doi : 10.1007/s00397-005-0063-1. URL s00397-005-0063-1.
[28] J. M. Davison, S. Clary, A. Saasen, M. Allouche, D. Bodin, and V.-A. Nguyen. Spe-56632-ms. page 13, 1999. doi : 10.2118/56632-MS. URL
[29] Bruce A. Firth and Robert J. Hunter. Flow properties of coagulated colloidal suspensions : Iii. the elastic floc model. Journal of Colloid and Interface Science, 57(2) :266–275, 1976. ISSN 0021-9797. doi : URL http://www.
[30] Bruce A. Firth. Flow properties of coagulated colloidal suspensions : Ii. experimental properties of the flow curve parameters. Journal of Colloid and Interface Science, 57(2) :257–265, 1976. ISSN 0021-9797. URL pii/0021979776902010.
[31] Robert J. Hunter. The flow behavior of coagulated colloidal dispersions. Advances in Colloid and Interface Science, 17(1) :197–211, 1982. ISSN 0001-8686. doi : URL pii/0001868682800195.
[32] J. Moghadasi, M. Jamialahmadi, H. Müller-Steinhagen, and A. Sharif. Spe-82233-ms. page 12, 2003. doi : 10.2118/82233-MS. URL
[33] Tore Larsen, Maria Lioliou, Terje Ostvold, Leif Olav Josang, and Preben Randhol. Spe-114045-ms. page 12, 2008. doi : 10.2118/114045-MS.
[34] O. J. Vetter and V. Kandarpa. Spe-8991-ms. page 11, 1980. doi : 10.2118/8991-MS. URL
[35] A. Gurkan Iscan, Faruk Civan, and Mustafa V. Kok. Alteration of permeability by drilling fluid invasion and flow reversal. Journal of Petroleum Science and Engineering, 58(1) :227–244, 2007. ISSN 0920-4105. doi : URL
[36] Jianchao Cai, Boming Yu, Mingqing Zou, and Maofei Mei. Fractal analysis of invasion depth of extraneous fluids in porous media. Chemical Engineering Science, 65(18) :5178–5186, 2010. ISSN 0009-2509. URL S0009250910003672.
[37] Gbedo Constant Agbangla, Éric Climent, and Patrice Bacchin. Experimental investigation of pore clogging by microparticles : Evidence for a critical flux density of particle yielding arches and deposits. Separation and Purification Technology, 101 :42–48, 2012. ISSN 1383-5866. doi : URL
[38] A. G. Iscan, M. V. Kok, and F. Civan. Investigation of porosity and permeability impairment in sandstones by x-ray analysis and simulation. Energy Sources, Part A : Recovery, Utilization, and Environmental Effects, 31(5) :387–395, Feb 2009. ISSN 1556-7036. doi : 10.1080/ 15567030701468084. URL
[39] Hongxia Zhang, Jienian Yan, Yu Lu, Yong Shu, and Shengying Zhao. Experimental study of low-damage drilling fluid to minimize waterblocking of low-permeability gas reservoirs. Petroleum Science, 6(3) :271–276, 2009. ISSN 1995-8226. doi : 10.1007/s12182-009-0043-7. URL
[40] M. V. Kok and A. G. Iscan. Estimation of filter cake thickness for water-based drilling fluids. Energy Sources, Part A : Recovery, Utilization, and Environmental Effects, 32(5) :400–406, Jan 2010. ISSN 1556-7036. doi : 10.1080/15567030802464024. URL 1080/15567030802464024.
[41] M. M. Sharma and R. W. Wunderlich. The alteration of rock properties due to interactions with drilling-fluid components. Journal of Petroleum Science and Engineering, 1(2) :127–143, 1987. ISSN 0920-4105. doi : URL




How to Cite

AKKAL, R.; KHODJA, M. INVESTIGATION OF THE IMPACT OF WEIGHTING PARTICLES ON DRILLING MUD RHEOLOGY AND DAMAGE TO RESERVOIR FORMATION. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 1S, p. 177–195, 2019. DOI: 10.4314/jfas.v12i1S.13. Disponível em: Acesso em: 24 mar. 2023.