SURFACE MODIFICATION OF SILICA NANOPARTICLES BY MEANS OF SILANES: EFFECT OF VARIOUS PARAMETERS ON THE GRAFTING REACTIONS
DOI:
https://doi.org/10.4314/jfas.v11i1.14Keywords:
nanoparticles of silica; organosilanes; surface modification; dissolution tests; FT-IR spectroscopy.Abstract
The adsorption of four silanes, namely: N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), 3-methacryloxypropyltrimethoxysilane (MPTMS), allyltrimethoxysilane (ATMS), N-2-[(N-vinylbenzylamino)ethyl]-3-aminopropyltrimethoxysilane hydrochloride (CVBS) onto the surface of silica nanoparticles has been studied using water/ethanol (5/95, v/v) mixture. Four experimental parameters were explored for the grafting of the silanes: pH, concentration, time, and temperature. Possible interactions between the silanes and the surface of silica were investigated by means of FT-IR Spectroscopy. The FT-IR analyses confirmed the effectiveness of the silanization of the silica surface. The amount of the adsorbed silane on the silica nanoparticles appeared to be influenced by the initial concentration of the silane, pH, time and temperature of modification.
Downloads
References
[2] Lauriente D, Yokose K. Chemical Economics. Handbook; 2005.
[3] Payne C.C. The Colloid chemistry of silica. Wilmington (Eds.), Advances in Chemistry: American Chemical Society, 1994, pp. 581-594.
[4] Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Int. J. Polymer, 2001, (42), 879-887.
[5] Preghenella M, Pegoretti A, Migliaresi C. Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Int. J. Polymer, 2005, (46), 12065–12072.
[6] Schick MJ, Hubbard T. Colloidal silica fundamentals and applications. Taylor & Francis Group (Eds). California (C): 2006, pp. 157-176.
[7] Legrand A, Hommel H, Tuel A, Vidal A, Balard H, Papirer E, Levitz P, Czernichowski M, Erre R, and Damm H. Hydroxyls of silica powders. Adv Colloid Interface Sci., 1990, (33), 291-330.
[8] Nakamura Y, Yamazakia R, Fukudaa T, Shitajimaa K, Fujiia S, and Sasakib M. Structure of silane layer formed on silica particle surfaces by treatment with silane coupling agents having various functional group.Int. J. Adhes Sci Technol., 2014, (28), 1895-1906.
[9] Iler RK. The chemistry of silica. John Wiley & Sons. New York (NY): 1979, p. 667.
[10] Zhuravlev L. The surface chemistry of amorphous silica colloids surf. Int.J. Physico-Chem Eng Asp., 2000, (173),1-38.
[11] Morrow B, Farlen M. Chemical reactions at silica surfaces.Int.J.Non-Cryst Solids., 1990,(120), 61-71.
[12] Vansant E F, Van der Voort P, Vrancken K C. Quantification of silanol number in characterization and chemical modification of the silica surface. Amsterdam (Netherlands): E.S.B.V (Eds.), 1995, p. 79-91.
[13] Rosch L, John P, Reitmeier R. Silicon compounds, organic. Germany: Ullmann’s Encyclopedia of industrial chemistry (Eds), 1997, pp. 21-23.
[14] Plueddemann E. Interfaces in polymer matrix composites. Academic press. New York (NY): 1974. pp. 31-77.
[15] Osterholtz F, Pohl E. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes .Int. J . Adhes Sci Technol., 1992, (6), 127-149.
[16] Okabayashi H, Shimizu I, Nishio E, and O’Connor C. Diffuse reflectance infra-red Fourier-transform spectral study of the interaction of 3-aminopropyltriethoxysilane on silica gel. Behavior of amino groups on the surface.Int. J. Colloid Polym Sci., 1997, (275), 744-753.
[17] Yee J, Parry D, Caldwell K, and Harris J. Modification of quartz surfaces via thiol-disulfide interchange.Int.J. Langmuir, 1991, (7), 307-313.
[18] Mercier L, Pinnavaia T. Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbant for environmental.Int. J. Adv Mater., 1997, (9), 500-503.
[19] Kim J, Seidler P, Wan L, and Fill C. Formation, structure, and reactivity of amino-terminated organic films on silicon substrates.Int. J .Colloid Interface Sci., 2009, (329), 114–119.
[20] Ciampi S, Harper J, Gooding J. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: Surface preparation, passivation and functionalization.Int.J. Chem Soc Rev., 2010, (39), 2158–2183.
[21] Gooding J, Ciampi S. The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies.Int.J. Chem Soc Rev., 2011, (40), 2704–2718.
[22] Haensch C, Hoeppener S, Schubert U. Chemical modification of self-assembled silane based monolayers by surface reactions.Int.J. Chem Soc Rev., 2010, (39), 2323–2334.
[23] Suzuki N, Ishida H. A review on the structure and characterization techniques of silane/matrix interphases.Int.J. Macromol Symp., 1996, (108), 19–53.
[24] Boukherroub R, Morin S, Bensebaa F, and Wayner D. New synthetic routes to alkyl monolayers on the Si(100) surface.Int.J. Langmuir, 1999, (15), 3831–3835.
[25] Kim J, Seidler P, Fill C, and Wan L. Investigations of the effect of curing conditions on the structure and stability of amino-functionalized organic films on silicon substrates by Fourier transform infrared spectroscopy, ellipsometry, and fluorescence microscopy.Int.J. Surf Sci., 2008, (602), 3323–3330.
[26] Kluth G, Sung M, Maboudian R. Thermal behavior of alkylsiloxane self-assembled monolayers on the oxidized Si(100) surface.Int.J. Langmuir, 1997, (13), 3775–3780.
[27] Asay D, Kim S. Evolution of the adsorbed water layer structure on silicon oxide at room temperature.Int. J. Phys Chem B., 2005, (109), 16760–16763.
[28] Vandenberg E, Bertilsson L, Liedberg B, Uvdal K, Erlandsson R, Elwing H, and Lundstrôm I. Structure of 3-aminopropyltriethoxy silane on silicon oxide.Int. J. Colloid Interface Sci., 1991, (147), 103–118.
[29] Monredon-Senani S. Interaction organosilanes/silice de precipitation du milieu hydro-alcoolique au milieu aqueux. University Paris VI; 2004
[30] Wasserman S, Tao Y, White sides G. Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates.Int.J. Langmuir, 1989, (5), 1074-1087.
[31] Tripp C, Hair M. Reaction of methylsilanols with hydrated silica surfaces: the hydrolysis of trichloro-, dichloro and monochloromethylsilanes and the effects of curing.Int.J. Langmuir, 1995, (11), 149-155.
[32] Peeters M. An NMR study of MeTMS based coatings filled with colloid silica.Int. J .Sol-Gel Sci Technol., 2000, (19), 131-135.
[33] Behringer K, Blümel I. Reactions of ethoxysilanes with silica: a solid state NMR study.Int. J. Liq Chromatogr Related Technol., 1996, (19), 2753-2765.
[34] Hoh K, Ishida H, Koenig J. Spectroscopic studies of the gradient in the silane coupling agent/matrix interface in fiberglass-reinforced epoxy.Int.J. Polym Compos., 1988, (9), 151–157.
[35] Ikuta N, Maekawa Z, Hamada H, Ichihashi M, and Nishio E. Evaluation of interfacial properties in glass fibre-epoxy resin composites – reconsideration of an embedded single filament shear-strength test.Int. J.Mater Sci., 1991, (26), 4663-4666.
[36] Yi H, Linxia G, Sundaralingam P, and Xiaodong Z. Role of interphase in the mechanical behavior of silica/epoxy resin nanocomposites. Int. J. Materials, 2015, (8), 3519-3531.
[37] Demjen Z, Pukanszky B, Foldes E, and Nagy J. Interaction of silane coupling agents with CaCO3.Int. J. Colloid Interface Sci., 1997, (190), 427-436.
[38] Migliorini S. Agent de couplage et surfaces modèles de silice, suivi en infrarouge ATR du greffage d’organosilanes sur oxyde de silicium. University of Montpellier II; 2000.
[39] Culler S, Ishida H, Koenig J. FT-IR characterization of the reaction at the silane/matrix resin interphase of composite materials.Int. J. Colloid Interface Sci., 1986, (109), 1-10.
[40] Dibyendu S, Rama Dubey N, Zhang J, Xie V, Varadan D, and Mathur G. Chemical functionalization of carbon nanotubes with 3-methacryloxypropyl-trimethoxysilane (3-MPTS). Int. J. Smart Mater Struct., 2004, (13), 1263–1267.
[41] Colon H, Zhang X, Murphy J, Rivera J, and Colon L. Allyl-functionalized hybrid silica monoliths.Int.J. Chem Commun., 2005, (22), 2826–2828.
[42] Chiang C, Ishida H, Koenig J. The structure of γ-aminopropyltriethoxysilane on glass surfaces.Int. J. Colloid Interface Sci., 1980, (74), 396–404.
[43] Doufnoune R, Haddaoui N, Riahi F. The Interactions of silane and zirconate coupling agents with calcium carbonate. Int. J. Polymer Mater., 2007, (56), 227–246.
[44] Ishida H, Koenig J. Fourier transform infrared spectroscopic study of the structures of silane coupling agent on E-glass fiber.Int. J.Colloid Interface Sci., 1978, (64), 565-576
[45] Bellamy LJ. The Infrared spectra of complex molecules. John Wiley & Sons (Eds). New York (NY): 1975. pp. 236-238.
[46] Gilles C, McEvan T, Nakhauva S, and Smith D. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids.Int. J .Chem Soc., 1960, 3973-3993.
[47] Favis B. The formation of coupling agent monolayers on the surface of mica. Int. J. Polym Compos., 1984, (5), 11-17.
[48] Plueddemann E. Principles of interfacial coupling in fibre-reinforced plastics. Int. J .Adhes Adhes., 1981, (1), 305–310.
[49] Minhong X, Yongyong C, Shunguo G. Surface modification of nano-silica with silane coupling agent. Int. J. Key Eng Mater., 2015, (636), 23-27.