SYNTHESIS, ELECTROCHEMICAL AND HETEROGENEOUS ELECTROCATALYTIC BEHAVIORS OF A NOVEL NON SYMMETRICAL COPPER(II) COMPLEX
DOI:
https://doi.org/10.4314/jfas.v11i1.31Keywords:
Keywords: Copper(II) Schiff base complex, Thermogravimetry, Cyclic voltammetry, Modified electrodes, Heterogeneous electroreduction.Abstract
We describe in this paper the synthesis of new unsymmetrical tetradentate copper(II) Schiff base complex, prepared from tridentate Schiff base ligand (HL) and pyridine molecule. This new copper complex was identified by various physicochemical characteristics such as elemental analysis (EA), FT-IR, UV-Vis, XPS analysis and thermogravimetry (TG/DTG). The electrochemical behavior of the copper(II) complex was investigated by cyclic voltammetry in N,N-dimethylformamide (DMF). These experiments have been allowed to obtain new conducting polymeric films, prepared by successive cycling at the suitable potentials. These polymeric films containing metallic centers were studied to evaluate their electrocatalytical performances in which copper (II) ions were used as electrocatalysts in the heterogeneous conditions for the electroreduction of 1,4-dibromobutane.
Downloads
References
[2] Adhikari A., Radhakrishnan S. and Patil R. Influence of dopant ions on properties of conducting polypyrrole and its electrocatalytic activity towards methanol oxidation. Synth. Met. 2009, 159, pp 1682-1688.
[3] Bedioui F., Devynck J., Bied-Charreton C. Electropolymerized manganese porphyrin films as catalytic electrode materials for biomimetic oxidations with molecular oxygen. J. Mol. Catal. A-Chem. 1996,113, pp 3-11.
[4] Ourari A., Ketfi B., Zerroual L. Elaboration of modified poly(NiII-DHS) films as electrodes by the electropolymerization of Ni(II)-[5,5′-dihydroxysalen] onto indium tin oxide surface and study of their electrocatalytic behavior toward aliphatic alcohols. Arab. J. Chem., 2017, 10, pp 914-921.
[5] Saraviaa L.P.H., Anandhakumara S., Parussuloa A.L.A., Matias T.A., Caldeira da Silva C.C., Kowaltowski A.J., Araki K., Bertotti M. Development of a tetraphenylporphyrin cobalt(II) modified glassy carbon electrode to monitor oxygen consumption in biological samples. J. Electroanal. Chem. 2016, 775, pp 72-76.
[6] Palmer M.H., Christen D. An ab initio study of the structure, tautomerism and molecular properties of the C- and N-amino-1,2,4-triazoles. J. Mol. Struct. 2004, 705, pp 177-187.
[7] Bagihalli G.B., Avaji P.G., Patil, Badami P.S. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. Eur. J. Med. Chem. 2008, 43, pp 2639-49.
[8] Emam S.M., El Sayed I.E.T., Ayad M.I., Hathout H.M. Synthesis, characterization and anticancer activity of new Schiff bases bearing neocryptolepine. J. Mol. Struc. 2017, 1146, pp 600-619.
[9] Ariyaeifar M., Rudbari H.A., Sahihi M., Kazemi Z., Kajani A.A., Zali-Boeini H., Kordestani N., Bruno G., Gharaghani S. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study. J. Mol. Struc. 2018, 1161, pp 497-511.
[10] Zhao F., Wang W., Lu W., Xu L., Yang S., Cai X-M., Zhou M., Lei M., Ma M., Xu H-J., Cao F., High anticancer potency on tumor cells of dehydroabietylamine Schiff-base derivatives and a copper(II) complex. Eur. J. Med. Chem. 2018, 146, pp 451-459.
[11] Amer S., El-Wakiel N., El-Ghamry H. Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives. J. Mol. Struc. 2013, 1049, pp 326-335.
[12] Gabr M.T., El-Gohary N.S., El-Bendary E.R., El-Kerdawy M.M., Ni N. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases. Chin. Chem. Lett. 2016, 27, pp 380-386.
[13] Hu G.Q., Wu X.K., Wang G.Q., Duan N.N., Wen X.Y., Huang W.L. Synthesis and antitumor and antibacterial evaluation of fluoro-quinolone derivatives (III): Mono- and bis-Schiff-bases. Chin. Chem. Lett. 2012, 23, pp 515-517.
[14] Ibrahim M.Y., Mohd Hashim N., Mariod A.A., Mohan S., Abdulla M.A., Abdelwahab S.I., Arbab I.A. “α-mangostin from Garcinia mangostana Linn: An updated review of its pharmaceutical properties. Arab. J. Chem. 2016, 9, pp 317-329.
[15] Olie G.H., Olive S. “The Chemistry of the Catalyzes Hydrogenation of Carbon Monoxide”. Springer, Berlin, 1984.
[16] Ourari A., Aggoun D. Synthesis and spectral analysis of N‑substituted pyrrole salicylaldehyde derivatives‑electropolymerization of a new nickel(II)‑Schiff base complex derived from 6‑[3′‑N‑pyrrolpropoxy]‑2‑hydroxyacetophenone and 1,2‑diaminoethane. J. Iran. Chem. Soc. 2015, 12, pp 1893-1904.
[17] Margerum J.D., Mller L.J. “Photochromism”. Wiley Interscience, New York,1971, pp 569.
[18] Guyon A.L., Klein L.J., Goken D.M., Peters D.G. Catalytic Reduction of 1-Bromooctane by Nickel(I) SalenElectrogenerated at a Mercury Cathode in Dimethylformamide. J. Electroanal. Chem. 2002, 526, pp 134-138.
[19] Golikand A.N., Raoof J., Baghayeri M., Asgari M., and Irannejad L. Nickel Electrode Modified by N,Nbis (Salicylidene)Phenylenediamine (Salophen) as a Catalyst for Methanol Oxidation in Alkaline Medium. Russ. J. Electrochem. 2009, 45, pp 192-198.
[20] Aslantas M., Kendi E., Demir N., Sabik A.E., Tumer M. and Kertmen M. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes. Spectrochim. Acta, Part A 2009, 74, pp 617-624.
[21] Brégeault J-M. Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies. Dalton Trans. 2003, 0, pp 3289-3302.
[22] Ourari A., Derafa W. and Aggoun D. A novel copper (II) complex with an unsymmetrical tridentate-Schiff base: synthesis, crystal structure, electrochemical, morphological and electrocatalytic behaviors toward electroreduction of alkyl and aryl halides. RSC Adv. 2015, 5, pp 82894-82905.
[23] Pfeiffer P., Breith E., Lübbe E., and Tsumaki T. Tricyclische orthokondensierte Nebenvalenzringe. Justus Liebigs Ann. Chem. 1933, 503, pp 84-130.
[24] (A) Mubarak M.S., Peters D.G. Addition to Activated Olefins of Radicals Formed from Reaction ofAlkyl Halides with Electrogenerated Nickel(I) Salen. J. Saudi Chem. Soc. 1999, 3, pp 135-146; (B) Semones M.A., Peters D.G. Production of Ethylene Oxide via Catalytic Reduction of 2-Bromo-and 2-Iodoethanol by Cobalt(I) Cyclam and Nickel(I) Cyclam Electrogenerated at Carbon Cathodes. J. Electrochem. Soc. 2000, 147, pp 260-265; (C) Fang D.M., Peters D.G., Mubarak M.S. Catalytic Reduction of 6-Bromo-1-hexene by Nickel(I)SalenElectrogenerated at Glassy Carbon Cathodes in Acetonitrile. J. Electrochem. Soc. 2001, 148, pp E464-E467; (D) Sweeny B.K., Peters D.G. Cyclic Voltammetric Study of the Catalytic Behavior of Nickel(I)SalenElectrogenerated at a Glassy Carbon Electrode in an Ionic Liquid (1-Butyl-3-methylimidazo-lium Tetrafluoroborate, BMIM+BF4–). Electrochem. Commun. 2001, 3, pp 712-715.
[25] Grimshaw J. Electrochemical Reactions and Mechanisms in Organic Chemistry. Elsevier, 2000.
[26] Costes J.P. Bulletin de la Société Chimique de France 1986, 1, pp 78.
[27] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, Inc., New Jersey, 6th edn, 2009.
[28] (A) Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. Wiley, New York, 1997; (B) Montazerozohori M., Khani S., Tavakol H., Hojjati A., Kazemi M. Synthesis, spectroscopic and thermal studies of some IIB group complexes with a new N2-Schiff base ligand. Spectrochim. Acta, Part A 2011, 81, pp 122-127.
[29] Samanta B., Chakraborty J., Choudhury C.R., Dey S.K., Dey D.K., Batten S.R., Jensen P., Yap G.P.A. and Mitra S. New Cu(II) complexes with polydentate chelating Schiff base ligands: synthesis, structures, characterizations and biochemical activity studies. Struct. Chem. 2007, 18, pp 33-41.
[30] Lu X.-H., Xia Q.-H., Zhan H.J., Yuan H.X., Ye C.P., Su K.X. and Xu G. Synthesis, characterization and catalytic property of tetradentate Schiff-base complexes for the epoxidation of styrene. J. Mol. Catal. A: Chem. 2006, 250, pp 62-69.
[31] Bouzerafa B., Ourari A., Aggoun D., Ruiz-Rosas R., Ouennoughi Y., Morallon E. Novel nickel(II) and manganese(III) complexes with bidentate Schiff-base ligand: synthesis, spectral, thermogravimetry, electrochemical and electrocatalytical properties. Res. Chem. Intermed. 2016, 42, pp 4839-4858.
[32] Ourari A., Aggoun D., Ouahab L. A novel copper(II)-Schiff base complex containing pyrrole ring: Synthesis, characterization and its modified electrodes applied in oxidation of aliphatic alcohols. Inorg. Chem. Commun. 2013, 33, pp 118-124.
[33] Bouzerafa B., Aggoun D., Ouennoughi Y., Ourari A., Ruiz-Rosas R., Morallon E., Mubarak M.S. Synthesis, spectral characterization and study of thermal behavior kinetics by thermogravimetric analysis of metal complexes derived from salicylaldehyde and alkylamine. J. Mol. Struct. 2017, 1142, pp 48-57.
[34] Ji R., Yu K., Lou L-L., Zhang C., Han Y., Pan S., Liu S. Chiral Mn(III) salen complexes immobilized directly on pyrolytic waste tire char for asymmetric epoxidation of unfunctionalized olefins. Inorg. Chem. Commun. 2012, 25, pp 65-69.
[35] Tourabi M., Nohair K., Traisnel M., Jama C. and Bentiss F. Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3, 5-bis (2- thienylmethyl)-4-amino-1, 2, 4-triazole. Corrosion Science 2013,75, pp 123-133.
[36] Li P., Lin J.Y., Tan K.L. and Lee J.Y. Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine. Electrochim. Acta 1997, 42, pp 605-615.
[37] Ourari A., Zoubeidi C., Derafa W., Bouacida S., Merazig H., Morallon E. A novel Nickel (II) complex obtained from 2-[(3-Bromo-propylimino)-methyl]-phenol as ligand: Synthesis, structural characterization, electrochemical and electrocatalytical investigations. Res. Chem. Intermed., 2016. doi: 10.1007/s11164-016-2817.
[38] Kianfar A.H., Ramazani S., Hashemi Fath R. and Roushani M. Synthesis, spectroscopy, electrochemistry and thermogravimetry of copper(II) tridentate Schiff base complexes, theoretical study of the structures ofcompounds and kinetic study of the tautomerism reactions by ab initio calculations. Spectrochim. Acta, Part A 2013, 105, pp 374-382.
[39] Bhattacharya D., Samide M.J. and Peters D.G. Catalytic reduction of cyclohexane- carbonyl chloride withelectrogenerated nickel(I) salen in acetonitrile. J. Electroanal. Chem. 1998, 441, pp 103-107.
[40] Lundquist Jr J.T. and Nicholson R.S. Theory of the potential step-linear scan electrolysis method with a comparison of rate constants determined electrochemically and by classical methods. J. Electroanal. Chem. 1968, 16, pp 445-456.
[41] Raess P.W., Mubarak M.S., Ischay M.A., Foley M.P., Jennermann T.B., Raghavachari K. and Peters D.G. Catalytic reduction of 1-iodooctane by nickel(I) salen electrogenerated at carbon cathodes in dimethylformamide: effects of added proton donors and a mechanism involving both metal- and ligand-centered one electron reduction of nickel(II) salen. J. Electroanal. Chem. 2007, 603, pp 124-134.