EFFECT OF SALINITY ON THE PHYSIOLOGICAL BEHAVIOR OF THE OLIVE TREE (VARIETY SIGOISE

Authors

  • S. Boualem Department of Agriculture, Faculty of Natural Sciences and Life, University Mustapha Stambouli, Mascara, Algeria
  • F. Boutaleb National Institute of Soils, Irrigation and Drainage, Relizane, Algeria
  • A. Ababou Department of Biology, Faculty of Natural Sciences and Life, University Hassiba Ben Bouali, Chlef, Algeria
  • F. Gacem National Institute of Soils, Irrigation and Drainage, Relizane, Algeria

DOI:

https://doi.org/10.4314/jfas.v11i1.33

Keywords:

Salinity; olive tree; salt stress; proline; chlorophyll.

Abstract

Salinity is a major problem directly affecting the ecological balance and the development of agriculture in the Mediterranean basin, particularly North Africa. This phenomenon is considered as the most important abiotic factor limiting crops growth and productivity, degrading and polluting soils in arid and semi-arid. In order to study the influence of salinity, on the physiological parameters and to assess the potential of adaptation of the olive tree in a saline environment, three parcels containing the Sigoise variety and subject to different degrees of salinity were selected: Parcel 1 (non-saline); Parcel 2 (saline); Parcel 3 (very saline). Under a saline constraint, the results showed two contrasting tendencies, an intense increase in the content of proline, sodium (Na+) and chlorophyll (b), while water content, potassium and chlorophyll (a) decreased strongly with increasing salinity.

Downloads

Download data is not yet available.

References

[1] Keren R. Salinité. Sumner M.E. Ed. Livre de science du sol, 2000, pp. 3-25.
[2] F.A.O : Annuaire statistique de la FAO, 2005.
[3] Shahbaz M, Ashraf M. Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 2013. 32:237–249, doi.org/10.1080/07352689.2013.758544
[4] Al Karaki GN. Growth of mycorrhizal tomato and mineral acquisition under salt stress, Mycorrhiza 10, 2000, 51–54, doi.org/10.1007/s005720000055
[5] Baatour O, M’rah S, Ben Brahim N, Boulesnem F, Lachaal M. Réponse physiologique de la gesse (Lathyrus sativus) à la salinité du milieu. Revue des Régions Arides, Tome 1, No. Spécial ,2004, 346-358.
[6] Zhu J.K. Plant salt tolerance. Trends in plant Science, 6, 2001, 66-71.
[7] Rezgui M., Bizid E., Ben Mechlia N. Etude de la sensibilité au déficit hydrique chez quatre variétés de blé dur (Triticum durum Desf.) cultivées en conditions pluviales et irriguées en Tunisie. Revue des Régions Arides, Tome 1, No spécial, 2004, 258-265.
[8] Ben Naceur M., Rahmoune C., Sdiri H., Maddah M., Selmi M. Effet du stress salin sur la germination, la croissance et la production en grains de quelques variétés maghrébines de blé. Sécheresse 12 (3), 2001, 167-174.
[9] Abdelly C., Aydi S., Drevon J.J. Effet of salinity on root-nodule conductance to the oxygen diffusion in the Medicago truncatula-Sinorhizobium meliloti symbiosis. Plant Physiol Biochem, 42, 2004, 883-840.
[10] Hernandez J.A., Campillo A., Jimenez A., Alacon J.J., Sevilla F. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol, 141, 1999, 241–251.
[11] Akbarimoghaddam, H.; Galavi, M.; Ghanbari, A.; Panjehkeh, N. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 2011, 9(1):43–50.
[12] Zidi C., Braudeau E. Le rétractomètre : mode d’emploi et utilisation pour la caractérisation hydro-structurale des sols. Tunis, Tunisie, Direction des Sols, Etudes Spéciales n° 303,1998.
[13] Brown J.J, Glenn E. P, Smith S. E. Feasibility of Halophyte Domestication for High-Salinity Agriculture, Sabkha Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation, Tasks for Vegetation Science 47, , 2014. 73-80, doi 10.1007/978-94-007-7411-7
[14] Barrs C, Weatheley PE. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences 15, 1968, 413-428.
[15] Arnon D. Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology. 24, 1949, 1-15.
[16] Troll W., Lindesly J. A photometric method for the determination of proline. J. Biol. Chem. (215), 1955, 655-660.
[17] Monneveux P, Nemmar M. Contribution à l'étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): Etude de l'accumulation de la proline au cours du cycle de développement. Agronomie 6, 1986, 583-590.
[18] Lafon J.P, Tharaud–Prayer C, Levy G. Biologie des Plantes Cultivées. Tome I. Org Phys De La Nutrition; Ed. Lavoisier, 1996, pp.153-160.
[19] Corwin, D.L.; Rhoades, J.D. Establishing soil electrical conductivity – depth relations from electromagnetic induction measurements. Commun. Soil Science and Plant Analysis, 1990, 21 (11–12), 861–901.
[20] Duchaufour PH. Pédogenèse et classification. Masson édition 2 Paris, 1983.
[21] Walali L.D, Skiredj A, Elattir H. Fiches techniques. L’amandier, l’olivier, le figuier, le grenadier, 2003.
[22] Morant-Manceau A., Pradier E., Tremblin G. Osmotic adjustment, gas exchanges and chlorophyll of a hexaploid triticale and its parental species under salt stress. J. Plant Physiol.161, 2004, 25–33, doi: 10.1078/0176-1617-00963
[23] Hassani A., Seddiki D., Kouadria M., Bouchenafa N., Negadi M., Labdaoui D. Effet de la salinité sur le comportement physiologique et biochimique de l'Oléastre (Olivier spontané) et l'olivier cultivé (variété Sigoise). Revue Ecologie-Environnement. 10, 2014, 1112-5888.
[24] Jagesh K., Tiwari Anilabh D., K., Munshi Ravinder NP., Raghu A., Ajay S., Jayant S., Bhat Amish Kumar S. Effect of Salt stress on cucumber: Na+/K+ ratio, osmolyte concentration, phénols and chlorophyll content Acta Physiol Plant 32, 2009, 103–114.
[25] Khalova J., Sairam R.K., Meena R.C., Srivastava G.C. Response of maize varieties to salinity stress in relation to osmolyte and métal-ion contents, oxidative stress and antioxidant enzymes activity. Biologia plantarum 53 (2), 2009, 249- 256.
[26] Levigneron A., Lopez F., Varisuyt G., Berthomien P., Casse-Delbar T. Les plantes face au stress salin. Cahier d’agriculture. (4), 1995, 263-273.
[27] Ali Y.; Aslam Z.; Ashraf M. Y. ; Tahir G. R. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science & Technology Vol. 1, No. 3, 2004. pp. 221-225.
[28] Heidari M. Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African Journal of Biotechnology Vol. 11(2), 2012. pp. 379-384.
[29] Bel Fakih M., Ibrizi M., Zouahri A., Hilali S. Effet de la salinité sur les paramètres morpho- physiologiques de deux variétés bananier (Musa acuminata L.). Journal of Applied Biosciences 63, 2013, 4689 – 4702.
[30] Chartzoulakis K., Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. 86, 2000, 247–260.
[31] Hadji M., Grignon C. Identification des transports de K+ [Rb+] affectés par NaCl dans la racine de Laurier rose. Physi. Végé. 23 ,1985, 3-12.
[32] Hamrouni, L.; Hanana, M.; Abdelly, C.; Ghorbel, A. Exclusion du chlorure et inclusion du sodium : deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage Vitis vinifera subsp. sylvestris (var. ‘Séjnène̓). Biotechnology, Agronomy, Society and Environment, 2011, 15(3), 387-400
[33] Tremblin G., Ferard G. Croissance et accumulation de sels chez Halopeplis amplexicaulis (Vahl.) Ung. Cultivé à différentes salinités. Acta oecologica. 15 (3), 1994, 355-364.
[34] Ouerghi Z., Zid E., Hadji M., Soltani A. Comportement physiologique du blé dur (Triticum durum L.) en milieu salé. In ROYO C, NACHIT MM, DIFONZO N, ARAUS JL, (eds). Durum wheat improverment in the mediterranean region: New challenges: l’amélioration du blé dur dans la région méditerranéenne: Nouveaux défis. Zaragoza: CIHEAM. IAMZ, 2000, 309-313.
[35] Jaarsma, R. ; de Vries, R.S. ; de Boer, A.H. Effect of Salt Stress on Growth, Na+ Accumulation and Proline Metabolism in Potato (Solanum tuberosum) Cultivars. PLoS One. 8(3), 2013, e60183.
[36] Jeschke W.D. Effects of Transpiration on Potassium and Sodium Fluxes in Root Cells and the Regulation of Ion Distribution Between Roots and Shoots of Barley Seedlings. Journal of Plant Physiology, Volume 117, Issue 3, 1984, 267-285.
[37] Kaci, S. ; Bissati, S. ; Djerroudi, O. Effet d’un stress salin sur la réponse minérale d’Atriplex canescens (Pursh) nutt. Revue des Bio Ressources Vol 2 N 2 Décembre, 2012, 48-58.

Downloads

Published

2018-12-25

How to Cite

BOUALEM, S.; BOUTALEB, F.; ABABOU, A.; GACEM, F. EFFECT OF SALINITY ON THE PHYSIOLOGICAL BEHAVIOR OF THE OLIVE TREE (VARIETY SIGOISE. Journal of Fundamental and Applied Sciences, [S. l.], v. 11, n. 1, p. 525–538, 2018. DOI: 10.4314/jfas.v11i1.33. Disponível em: https://www.jfas.info/index.php/JFAS/article/view/255. Acesso em: 18 oct. 2025.

Issue

Section

Articles