SOLVENT EFFECT ON HYPER-RAYLEIGH SCATTERING (HRS) FIRST HYPERPOLARIZABILITY OF SUBSTITUTED POLYENE: PART (I)

Authors

  • N. S. Labidi Institut des Sciences et de la Technologie, Département des Sciences de la Matière, Centre Universitaire de Tamanrasset.11000 Tamanrasset, Algérie

DOI:

https://doi.org/10.4314/jfas.v13i3.2

Keywords:

First hyperpolarizability; Hyper-Rayleigh scattering (HRS); push-pull; solvent

Abstract

The first hyperpolarizabilities βHRS of substituted hexatriene molecules have been carried out to assess the effects of the bridge length, of the frequency dispersion as well as the solvent polarity. These calculations confirm the particular behaviour of the first hyperpolarizability βHRS, depolarization ratio and the anisotropy factor as a function of the incident light frequency and solvent polarity. The impact of the solvent and expanding the π-conjugated limit to improve the βHRS. Finally, the interplay between bHRS and b//, bvec, dN...N, Egap and the Kirkwood–Onsager factor [(ε–1)/(2ε + 1)] was established.

Downloads

Download data is not yet available.

References

Clays.K and André.P. Handbook of advanced electronic and photonic materials and devices. H.S. Nalwa (Eds.), Hyper-rayleigh scattering: Opportunities for molecular, supramolecular, and device characterization by incoherent second-order nonlinear light scattering. San Diego: Academic Press, 2001, pp. 229-266.

Stegeman G.I, Stegeman R.A. Nonlinear Optics: Phenomena Materials and Devices. New York: Wiley, 2012, pp.15–39.

Chen K.J, Laurent A.D, Jacquemin D. Strategies for Designing Diarylethenes as Efficient Nonlinear Optical Switches. J Phys. Chem C., 2014, 118(8), 4334– 4345.

Liu Y, Yuan Y, Tian X, Yuan J, Sun J. Computational design of p-(dimethylamino) benzylidene-derived push-pull polyenes with high first-hyperpolarizabilities. Phys. Chem. Chem. Phys., 2020, 22, 5090–5104.

Oviedo M.B, Ilawe N.V, Wong B.M. Polarizabilities of π-conjugated chains revisited: improved results from broken-symmetry range-separated DFT and New CCSD(T) benchmarks. J. Chem. Theory Comput., 2016,12(8), 3593–3602.

Liu Y, Yuan Y, Tian X, Yuan J, Sun J. High first-hyperpolarizabilities of thiobar bituric acid derivative-based donor-π-acceptor nonlinear optical-phores: Multiple theoretical investigations of substituents and conjugated bridges effect. Int. J. Quantum. Chem., 2020, e26176, 1–13.

Meier de Andrade A, Loren Inacio P, Alexandre Camilo Jr. Theoretical investigation of second hyperpolarizability of trans-polyacetylene : Comparison between experimental and theoretical results for small oligomers. J. Chem. Phys., 2015,143, 244906 –7.

Beverina L, Pagani G.A. Π Conjugated zwitterions as paradigm of donor acceptor building blocks in organic-based materials. Acc. Chem. Res., 2014, 47(2), 319–329.

Yanling S, Guochun Y. Non-planar donor–acceptor chiral molecules with large second-order optical nonlinearities: 1,1,4,4-Tetracyanobuta-1,3-diene derivatives. J. Phys. Chem A; 2014, 118(6), 1094–1102.

Hrobarik P, Sigmundova I, Zahradnik P, Kasak P, Arion V, Franz E, Clays K. Molecular engineering of benzothiazolium salts with large quadratic hyperpolarizabilities. J Phys.Chem C., 2010, 114(50), 22289–22302.

Gorman C.B, Marder S.R. Effect of molecular polarization on bond-length alternation, linear polarizability, first and second hyperpolarizability in donor-acceptor polyenes as a function of chain length. Chem. Mater., 1995, 7(1), 215–220.

Labidi N.S. Semi empirical and Ab initio methods for calculation of polarizability (α) and the hyperpolarizability (β) of substituted polyacetylene chain. Arabian. J. Chem., 2016, 9, 1252–1259.

Tomasi J, Mennucci B, Ammi R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105(8), 2999–3094.

Sekino H, Bartlett R. J. Frequency dependent nonlinear optical properties of molecules. J. Chem. Phys., 1986,85(2), 976–989.

Van Gisbergen S.J.A, Snijders J.G, Baerends E.J. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules. J. Chem. Phys., 1998,109(24), 10657–10668.

Bogdan E, Plaquet A, Antonov L, Rodriguez V, Ducasse L, Champagne B,Castet F. Solvent effects on the second-order nonlinear optical responses in the keto-enol equilibrium of a 2-hydroxy-1-naphthaldehyde derivative. J. Phys. Chem C., 2010, 114(29), 12760–12768.

Yang M, Champagne B. Large off-diagonal contribution to the second-order optical non linearities of Λ-shaped molecules. J. Phys. Chem A., 2003, 107(19), 3942–3951.

Jacquemin D, Champagne B, Hättig C. Correlated frequency-dependent electronic first hyperpolarizability of small push–pull conjugated chains. Chem. Phys. Lett., 2000,319(3), 327–334.

Gaussian 09, Revision C. 01, Frisch M.J, Trucks G.W, Schlegel H.B, Scuseria G.E, Robb M.A, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G.A, Nakatsuji H, Caricato M, Li X, Hratchian H.P, Izmaylov A.F, Bloino J, Zheng G, Sonnenberg J.L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Montgomery J.A.J, Peralta J.E, Ogliaro F, Bearpark M, Heyd J.J, Brothers E, Kudin K.N, Staroverov V.N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J.C, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J.M, Klene M, Knox J.E, Cross J.B,Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R.E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J.W, Martin R.L, Morokuma K, Zakrzewski V.G, Voth G.A, Salvador P, Dannenberg J.J, Dapprich S, Daniels A.D, Farkas O, Foresman J.B, Ortiz J.V, Cioslowski J, Fox D.J. Gaussian, Inc. Wallingford CT: 2010.

Haynes W.M, Lide D.R, Bruno T.J. CRC Handbook of Chemistry and Physics. 97th Edition.CRC-Press, Boca Raton, 2017.pp.6-199–219.

Woodford J.N, Pauley M.A, Wang C.H. Solvent dependence of the first molecular hyper polarizability of p-nitroaniline revisited. J. Phys. Chem A., 1997, 101(11), 1989–1992.

Downloads

Published

2021-07-24

How to Cite

LABIDI, N. S. SOLVENT EFFECT ON HYPER-RAYLEIGH SCATTERING (HRS) FIRST HYPERPOLARIZABILITY OF SUBSTITUTED POLYENE: PART (I). Journal of Fundamental and Applied Sciences, [S. l.], v. 13, n. 3, p. 1175–1192, 2021. DOI: 10.4314/jfas.v13i3.2. Disponível em: https://www.jfas.info/index.php/JFAS/article/view/1018. Acesso em: 27 apr. 2025.

Issue

Section

Articles