• F. Soualmia Laboratory of Process Engineering and Environment, Faculty of Chemistry, University of Sciences and Technologies of Oran (USTO) , BP 1503 Oran 31000, Algeria
  • Belaidi S. Group of Computational and Medicinal Chemistry, Laboratory of Molecular Chemistry and environment, Department of Chemistry , University of Biskra
  • N. Tchouar Laboratory of Process Engineering and Environment, Faculty of Chemistry, University of Sciences and Technologies of Oran (USTO) , BP 1503 Oran 31000, Algeria
  • T. Lanez VTRS Laboratory, Faculty of Sciences and Technology, University of El Oued, B.P.789, 39000 El Oued, Algeria



Macrolide, Antibiotic, Conformational analysis, Stereochemical, Molecular mechanics


Macrolide antibiotics have been the focus of widespread research due to increasing bacterial resistance. There have been significant synthetic and theoretical efforts to generate new core structures to address this challenge. Structure elucidation of a large number of macrolides, shows the existence of two parts. The first one is a macrocyclic system from 12 to 40 links with several asymmetric centers and a lactone function; the second part is a sugar. Macrolide antibiotics play a therapeutically important role, particularly in the emergence of new pathogens. Among these products of major importance are macrolide antibiotics. The macrolide antibiotics family (14-, 15-, 16- membered ring derivates) shows a wide range of antibacterial spectrum. Conformational analysis indicates that each studied macrocycle presents eight families of privileged conformers. They result from the combination of the conformations of the two systems, diene anda,b-unsaturated ester. In presence of tricarbonyliron, the number of the privileged conformations was reduced to four. The study of stereochemical control in macrocycles was carried out using molecular mechanics and molecular dynamics. The results show a high conformational mobility of macrocycles. For complexing macrocycles, a high diastereoselectivity was obtained, this is the result from the combination of local control exerted by the methyl group and stereochemical control with tricarbonyliron. This last factor constitutes a tool of the stereochemical remote control, which permits to foresee the phenomenon of the stereoselectivity for envisaged reactions.






Download data is not yet available.


[1] Brian C R, Clayton H H, Org. Lett. , 2000 2, 27-28,
[2] Nakayama I. Macrolides in clinical practice, Orlando, FL, Academic Press, 1984, pp261–300.
[3] Still W C, Galynker I, Tetrahedron, 1981, 37, 3981-3996, S0040-4020 (01)93273-9
[4] Still W C, Novack V J J, Am. Chem. Soc., 1984, 106, 1148-1149, /ja00316a072
[5] Grée D M , Kermarrec C J M , Martelli J T , Grée R, Lellouche J P,Toupet L J, Org. Chem., 1996, 61, 1918-1919,
[6] Becker O, MacKerell A D, Roux J B, Watanabe M K, 1st Ed., Computational Biochemistry and Biophysics, Marcel Dekker Inc., New York, NY, 2001, pp12745-12745
[7] Norman L A, J. Am. Chem. Soc. , 1977, 99, 8127-8134, doi: 10.1021/ja00467a001
[8] Metropolis N, Rosenbluth A , Rosenbluth M , Teller A, Teller E , J. Chem. Phys., 1953, 21, 1087,
[9] C.S. Chem 3D Pro, Molecular Modeling and Analysis, Cambridge Soft Corporation, 875 Massachusetts, 02139 U. S. A , 2005
[10] HyperChem (Molecular Modeling System) Hypercube, Inc., 1115 NW 4th Street, Gainesville, FL32601; USA, 2005
[11] Belaidi S, Dibi A, Omari M, A Conformational Exploration of Dissymmetric Macrolides Antibiotics, Turk J Chem. , 2002, 26, 491-500
[12] Belaidi S, Laabassi M, Grée R, Botrel A, Analyse multiconformationnelle des macrolides symétriques de 12 à 28 chaînons, basée sur la mécanique moléculaire, Sci. Stud. & Res. Research, 2003, 4, 27-38
[13] Detar D F, Binzet S, Darba P. J.Org.Chem., 1985, 50, 2826-2836, /jo00216a004
[14] Allinger N L, Tribble M T, Miller M A, Wertz D H, J. Am. Chem. Soc. , 1971, 7,1637-1648,
[15] Lehn J M, Dietrich B, Viout P, Aspects de la chimie des composés macrocycliques, Editions CNRS, 1995, pp 5.
[16] Pedersen C J, Synthetic Multidentate Macrocyclic Compound, New york, Academic Press, 1978, pp1-51.
[17]bAllinger N L , Cava M P, DeJongh D C, Johnson C R, Lebel N A ,Stevens C L, Organic Chemistry, Vol.1 , New York: Worth Publishers, McGraw-Hill, 1976, pp. 45
[18] TSAR (Tools for Structure Activity Relationships) Oxford Molecular Group, The Medawar Centre, Oxford Science Park, Oxford, OX4 4GA, UK, 1996.
[19] Koca J, Carlsen P H J, J. Mol. Structr. , 1993, 291, 271, (93)85050-5
[20] Pearson A J, Diene and dienyl complexes of iron: Reactivity and synthetic utility, Trans. Met. Chem. , 1981, 6, 67-78
[21] Yamazaki T, Ando M , Kitazume T , Kubota T ,Omura , Org. Lett. , 1999, 6,905-908, doi: 10.1021/ol990821c
[22] Takahashi T, Yokoyama H, Yamada H, Haino T, Fukazawa Y, SynletL.letters. , 1993,49,1783-1792, doi: 10.1055/s-1993-22503
[23] Belaidi S, Omari M, Prédiction conformationnelle des macrolides de 13 a 25 chainons par la mécanique moléculaire, J. Soc. Alger. Chim.2000, 10 (1), 31-40
[24] Belaidi S, Dibi A, Omari M, Trans-Mediterranean Colloquium on Heterocyclic Chemistry, Marseille, France, February 1-5 2000, PIII. 2
[25] Cox L R, Ley S V, Chem. Soc. Rev., 27, 1998, 301-314, doi: 10.1039/a827301z
[26]Belaidi S, Dibi A, Omari M, A Conformational Exploration of Dissymmetric Macrolides Antibiotics, Turk J Chem. , 2002, 26, 491-500
[27] Belaidi S, Omari M, Lanez T and Dibi A, Contribution a l’étude de la relation structure-activité dans des nouveaux macrolides antibiotiques, J. Soc. Alger. Chim., 2004,14, 27 -39
[28] Belaidi S and Harkati D, Conformational Analysis in 18-Membered Macrolactones, Based on Molecular Modeling, ISRN Org. Chem., 2011, 2011 ,1-5,
[29] Belaidi S, Dibi A et Omari M, Contribution à l’étude du contrôle stéréochimique dans les macrolides à 16 chaînons par la mécanique moléculaire, J. Soc. Alger. Chim. ,2000 , 10, 221-232
[30] Belaidi S, Laabassi M, Grée R and Botrel A, Nouvelle approche de la stéréosélectivité dans des macrolides antibiotiques à 20 chaînons par la modélisation moléculaire, Rev. Roum. chim., 2005,50,759-765
[31] Takahashi T, Yokoyama H , Yamada H , Haino T and Fukazawa Y ,Syn. Lett.1993,7, 494-496, doi:10.1055/s-1993-22503
[32] Belaidi S, Youcef O, Salah T and Lanez T, J. Comput. Theor. Nanos., 2015, 12 (11), 4855-4861, doi: 10.1166/jctn.2015.4451
[33] Belaidi S and Melkemi N, Chem. Asian J., 2013, 25(8), 4527-4531,
[34] Soualmia F , Belaidi S, Belaidi H, Tchouar N, Almi Z, J. Bionanosci., 2017, 11( 6), 584-591,
[35] Lipinski C A, Lombardo F, Dominy B W, Feeney P J, J. Adv. Drug. Delivery. Rev., 2012, 64 , 4-17,
[36] Kerassa A, Belaidi S, Harkati D, Lanez T, Prasad O, Sinha L, Reviews in theoreticcal science, 2016, 4, 85-96,
[37]Yavorski B, Detlaf A, Checklist of Physics, Mir, Moscow, 3rd edition, Russia, 1980, pp.376-1131.
[38] Deleu M, Synthesis of Surfactin Derivatives and Study Their Properties, Ph.D Thesis, FUSAGX, Belgium, 2000.
[39] Kier L B, Molecular Orbital Theory in Drug Research, New York, Academic Press, USA, 1981.




How to Cite

SOUALMIA, F.; S., B.; TCHOUAR, N.; LANEZ, T. REVIEW OF COMPUTATIONAL STUDIES APPLIED IN NEW MACROLIDE ANTIBIOTICS. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 1S, p. 392–415, 2019. DOI: 10.4314/jfas.v12i1S.28. Disponível em: Acesso em: 24 mar. 2023.

Most read articles by the same author(s)